
The Cactus Framework
Erik Schnetter

September 2006

Outline

• History

• The Cactus User Community

• Cactus

• Usage Patterns

Bird’s eye view

• Cactus is a freely available,
portable, and manageable
environment for collaboratively
developing parallel, scalable,
high-performance multi-
dimensional component-based
simulations

Saguaro

(Carnegiea gigantea)

History

• Cactus 1.0 was released in April 1997 at
NCSA by the numerical relativity group

• Cactus 4.0 is available since 1999

• Since then incremental (i.e., mostly
backwards-compatible)development

• Most users today still in numerical relativity

Overall Design

Core flesh with plug-in thorns

extensible APIs

ANSI C

schedule

parameters

error handling

grid variables

make system

boundary conditions

coordinatesparallelism

I/O

memory management

reduction
interpolation

multigrid

SOR solver
CFD

remote steering

wave equation

Einstein equations

AMR

your physics

your computational
tools

User Base
• Some groups base their

whole code on Cactus

• Some groups use Cactus
on the side

• In some places, individual
students/postdocs use a
Cactus-based public code

• Most Cactus users write
thorns

• Few Cactus users
contribute to the
infrastructure

• Cactus and the core
thorns are public (LGPL)

• Many thorns are private

Development Process
• Flesh and core thorns are

developed by a small
group

• Weekly video
conferences

• Frequent bug reports/
feature requests from
users

• Trying to balance stability
and new features

• Mostly steady
development with ~10
releases; many users live
off CVS, not stable
versions

• (Physics thorns are
developed by physicists)

Einstein Toolkit
• A common infrastructure

for all relativity codes

• Defines common
variables, common
schedule events, etc.

• Comes with public
thorns for basic tasks
(simple initial data, simple
analysis methods)

• There are least five
production level relativity
codes based on Cactus,
all but one private, all
using the Einstein Toolkit

• Three-level structure:

Computational Toolkit

Einstein Toolkit

Physics code

Library vs. Framework
• A framework is like a

library, except that it
contains the main
programme -- the user
modules are libraries

• Crucial for easy
interoperability --
otherwise, two modules
may “fight” over who may
be the main programme

• Cactus thorns are
“connected” via their
schedule

• Schedule is constructed
at run time -- no code
needs to know all
compiled thorns

• Thorns can be developed
completely independently

Anatomy of a Thorn
• A thorn in Cactus

contains:

• Cactus declarations
(CCL language)

• source code (C, C++,
Fortran)

• makefile fragments

• documentation

• test cases

• example parameter
files

• Thorns are the basic
modular units

• Usually, each thorn is in a
separate CVS repository

interface.ccl
• Declares thorn name and

implementation name

• Declares grid functions

• Can inherit public grid
functions from other
implementations

• Declares routines (APIs
provided/used by the
thorn)

IMPLEMENTS: ADMConstraints
INHERITS: ADMBase

CCTK_REAL Hamiltonian TYPE=gf
{
 ham
} “Hamiltonian Constraint”

CCTK_REAL Momentum TYPE=gf
{
 momx momy momz
} “Momentum Constraint”

schedule.ccl
• Calls routines at certain

times, e.g. initial or evol or
analysis

• Schedule groups introduce
a hierarchical structure

• Rule-based: schedule
AFTER, BEFORE, WHILE

• Allocates storage for grid
variables

• Synchronises variables

SCHEDULE ADMConstraints_Calculate AT analysis
{
 LANG: Fortran
 STORAGE: Hamiltonian Momentum
 SYNC: Hamiltonian Momentum
 TRIGGERS: Hamiltonian Momentum
} “Calculate the constraints”

param.ccl
• Declares parameters

• Five types: integer, real,
boolean, keyword, string

• Allowed ranges need to
be declared

• Can “inherit” public
parameters from other
implementations, possibly
extending ranges

SHARES: ADMBase

EXTENTS KEYWORD initial_data
{
 “gaussian” :: “Gaussian pulse”
}

PRIVATE:

CCTK_REAL gaussian_amplitude \
 “Amplitude”
{
 0.0:* :: “must be nonnegative”
} 1.0

Example Source Code
#include “cctk.h”
#include “cctk_Arguments.h”

subroutine ADMConstraints_calculate (CCTK_ARGUMENTS)
 implicit none
 DECLARE_CCTK_ARGUMENTS

 CCTK_REAL :: dx, dy, dz
 integer :: i, j, k

 dx = CCTK_DELTA_SPACE(1)
 ...

 do i = 2, cctk_lsh(1)-1
 ...
 ham(i,j,k) = (gxx(i+1,j,k) - gxx(i-1,j,k)) / (2*dx)
 ...

Parameter Files
• At run time, parameter

files activate thorns and
specify parameter values

• Not all compiled thorns
need to be active

ActiveThorns = “PUGH CartGrid3D ADMBase IDSimple ADMConstraints”

driver::global_nx = 101
...
grid::xmin = 0.0
grid::xmax = 30.0
...
grid::type = “octant”

ADMBase::initial_data = “Minkowski”

Driver
• A driver is a special thorn

that handles memory
management and
parallelisation

• Two drivers exist: PUGH
(uniform grid) and Carpet
(AMR, multi-block)

• Two more AMR drivers in
development, based on
SAMRAI and Paramesh

• Interpolation, reduction,
and hyperslabbing
operations closely tied to
driver

• I/O (efficient and parallel)
and checkpointing/
recovery also somewhat
driver specific

Application Base
• Current Cactus users are

mostly in numerical
relativity, including
relativistic hydro

• We begin to use it for
CFD

• Sporadic uses in many
fields: astrophysics
(Zeus), chemistry, oil field
simulations, ...

• Cactus is mostly used for
3D time evolution with
explicit time stepping

• Non-trivial initial data
(elliptic equations) are
mostly imported (this
used to be different)

• We have a few public
“Killer Thorns”

Visualisation
• gnuplot, xgraph, ygraph,

etc. for 1D and 2D ASCII
output

• Common HDF5 data
format for Cactus
simulations (because I/O
is from a few thorns only)

• Amira, OpenDX for both
debugging and production
visualisation

• Built-in web server with
jpeg slides

• www.cactuscode.org:
5555/

http://www.cactuscode.org:5555
http://www.cactuscode.org:5555
http://www.cactuscode.org:5555
http://www.cactuscode.org:5555

Metadata and Data
Preservation

• Thorn Formaline collects
meta-data about a
simulation (and sends
them to a server)

• Collects machine name,
user name, parameters,
current simulation time,
special events, etc.

• Allows real-time
overview about currently
running simulations by all
people on all machines

• Some simulation results
are later semi-
automatically staged to
be permanently stored in
an archive

Discretisations
• Cactus supports block-

structured regular grids
best

• We use both Berger-
Oliger AMR and multi-
block discretisations

• We use (high order)
finite differences

• Some experiments with
pseudo-spectral
discretisations

• Some experiments with
particle codes (SPH)

• Plans for unstructured
grids (finite elements,
finite volumes)

Performance
• Performance must be

measured

• Parallelisation
performance depends on
driver thorn

• I/O performance depends
on I/O thorns

• Important: convenient
pervasive performance
measurements for
application code

• Cactus offers timers

• Automatic timers for
each scheduled routine

Random Details
• CCL files are parsed by

perl code, creating C
code and latex files

• Makefile fragments
require GNU make

• Flesh written in ANSI C,
thorns can be C, C++, or
Fortran; other languages
could be “easily” added

• Flesh helps with function
calls between different
languages (strings!)

• Fortran code is
preprocessed with cpp
(and sanitised with perl)

• Documentation uses
latex

Building Cactus
• User can build several

different configurations in
the same Cactus tree

• User chooses list of
thorns and set of options
for each configuration

• Cactus is not “installed”
in the way e.g. PETSc is;
each user has the
complete source tree

• Problem: User makes
private modification →
user forgets → results
are not reproducible
(solution: store source
for each simulation)

• We keep a list of known
good build options for
each machine

Further Information

• Cactus: www.cactuscode.org

• Live simulation: www.cactuscode.org:5555

• Carpet (AMR driver): www.carpetcode.org

• Goodale et al., “The Cactus Framework and
Toolkit: Design and Applications”, Vector and
Parallel Processing - VECPAR'2002, Lecture
Notes in Computer Science

http://www.cactuscode.org
http://www.cactuscode.org
http://www.cactuscode.org:5555
http://www.cactuscode.org:5555
http://www.carpetcode.org
http://www.carpetcode.org

