
CCA
Common Component Architecture

MODEST-7c Workshop 1MODEST-7c Workshop15 September 2006 115 September 2006

The Common Component Architecture:
Building Frameworks for
Computational Science

David E. Bernholdt

Oak Ridge National Laboratory

bernholdtde@ornl.gov

http://www.cca-forum.org

Work supported in part by the Scientific Discovery through Advanced Computing (SciDAC) program, Office of
Advanced Scientific Computing Research, U. S. Dept. of Energy. Oak Ridge National Laboratory is managed
by UT-Battelle, LLC for the US Dept. of Energy under contract DE-AC-05-00OR22725.

MODEST-7c Workshop 215 September 2006

CCA
Common Component Architecture

Acknowledgements
• The Common Component Architecture is a true

community effort, and therefore the represents the
collective efforts of many people

• The CCA Forum is the standards body/user group

• Two large DOE/SC-sponsored projects have led the
development
– 2001-2006: Center for Component Technology for

Terascale Simulation Software (CCTTSS)
– 2006-2011: Center for Technology for Advanced Scientific

Component Software (TASCS)

• Many other projects with a wide range of sponsors
have also made significant contributions
– DoD, DOE/NNSA, EU, NASA, NIH, probably others…

• Users from a wide range of scientific disciplines

MODEST-7c Workshop 315 September 2006

CCA
Common Component Architecture

What are Components?

• No universally accepted definition in computer
science research, but key features include…

• A unit of software development/deployment/reuse
– i.e. has interesting functionality
– Ideally, functionality someone else might be able to (re)use
– Can be developed independently of other components

• Interacts with the outside world only through well-
defined interfaces
– Implementation is opaque to the outside world

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on interfaces

MODEST-7c Workshop 415 September 2006

CCA
Common Component Architecture

What is a Component
Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…
– And have confidence that their components will work with

other components written in the same architecture

• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which components are composed to

form an application and executed (framework)
– The rights and responsibilities of the framework

MODEST-7c Workshop 515 September 2006

CCA
Common Component Architecture

What is the CCA?

• Component-based software engineering has been
developed primarily in other areas of computing
– Especially business and internet
– Examples: CORBA Component Model, COM, Enterprise

JavaBeans

• Many of the needs are similar to those in HPC scientific
computing

• But scientific computing imposes special requirements
not common elsewhere

• CCA is a component environment specially designed to
meet the needs of HPC scientific computing

MODEST-7c Workshop 615 September 2006

CCA
Common Component Architecture

Special Needs of Scientific HPC

• Support for legacy software
– How much change required for component environment?

• Performance is important
– What overheads are imposed by the component

environment?

• Both parallel and distributed computing are important
– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers? Arrays? (as first-class objects)
– Is it available on my parallel computer?

MODEST-7c Workshop 715 September 2006

CCA
Common Component Architecture

Computational Science Frameworks

• This is my personal working definition

• Frameworks provide an environment for the
development and execution of simulations in a
given scientific domain or class of problem

• Provide utility routines specialized to the domain
– Simplifies the task of developing simulations in that

domain

• Usually define a simulation workflow
– Definition may be implicit in framework structure
– May provide some flexibility, but not complete

freedom

MODEST-7c Workshop 815 September 2006

CCA
Common Component Architecture

Relationship between Components
and Science Frameworks

• Component environments are much more basic than
computational science frameworks
– They provide a way to hook pieces of code together
– They don’t (of themselves) provide anything domain-specific

• Component environments can be used as the basis for the
construction of computational science frameworks
– A rich component “ecosystem” is likely to have many relevant

things already available in component form

• This approach has important benefits in flexibility and openness
• Even without actually using a component environment,

framework design and development can benefit from component
concepts

• Caveat: the component world (including CCA) also uses the
term framework
– More about CCA frameworks later

MODEST-7c Workshop 915 September 2006

CCA
Common Component Architecture

CCA Concepts: Components

• A component encapsulates some computational
functionality

• Components provide/use one or more interfaces
– A component with no interfaces is formally okay, but isn’t very

interesting or useful

• In SIDL, a component is a class that implements
(inherits from) gov.cca.Component
– This means it must implement the setServices method to

tell framework what ports this component will provide and use
– gov.cca.Component is defined in the CCA specification

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

MODEST-7c Workshop 1015 September 2006

CCA
Common Component Architecture

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports
– A port expresses some computational functionality
– In Fortran, a port is a bunch of subroutines or a module
– In OO languages, a port is an abstract class or interface

• Ports and connections between them are a
procedural (caller/callee) relationship, not dataflow!
– e.g., FunctionPort could contain a method like
evaluate(in Arg, out Result) with data flowing both
ways

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

MODEST-7c Workshop 1115 September 2006

CCA
Common Component Architecture

CCA Concepts: Provides and Uses Ports

• Components may provide ports – implement the
class or subroutines of the port ()
– Providing a port implies certain inheritance relationships

between the component and the abstract definition of the
interface

– A component can provide multiple ports
• Different “views” of the same functionality, or
• Related pieces of functionality

• Components may use ports – call methods or
subroutines in the port ()
– Use of ports is just like calling a method normally except for

a little additional work due to the “componentness”
– No inheritance relationship implied between caller and callee
– A component can use multiple ports

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

“Provides” Port

“Uses” Port

MODEST-7c Workshop 1215 September 2006

CCA
Common Component Architecture

CCA
Concepts:

Frameworks
• The framework provides the means to “hold” components and

compose them into applications
• Frameworks allow connection of ports without exposing

component implementation details
• Frameworks provide a small set of standard services to

components
– Framework services are CCA ports, just like on components
– Additional (non-standard) services can also be offered
– Components can register ports as services using the

ServiceProvider port

• Currently: specific frameworks are specialized for specific
computing models (parallel, distributed, etc.)

• Future: better integration and interoperability of frameworks

MODEST-7c Workshop 1315 September 2006

CCA
Common Component Architecture

CCA Concepts: Language
Interoperability

• Scientific software is increasingly
diverse in use of programming
languages

• In a component environment, users
should not care what language a
component is implemented in

• “Point-to-point” solutions to
language interoperability are not
suitable for a component
environment

• The Babel language interoperability
tool provides a common solution for
all supported languages

• Scientific Interface Definition
Language provides language-
neutral way of expressing interfaces

C

C++

f77

f90

Python

Java

C

C++

f77

f90/95

Python

Java

MODEST-7c Workshop 1415 September 2006

CCA
Common Component Architecture

Coding in a CCA Environment

Port
Definitions

(SIDL)

Component
Definition (SIDL)

Component
source
code

Application
(component assembly)

CCA Framework

Compiled Components
(object libraries)

Babel compiler
(SIDL→language)

Language
compiler & linker

Generated
language code

Babel runtime library &
Chasm F90 array library

Key:

Generated codeCCA Tools

Standard Tools Object libraries

User code

••••

MODEST-7c Workshop 1515 September 2006

CCA
Common Component Architecture

Performance, the Big Picture
Direct-Connect, Parallel
• No CCA overhead on…

– calls within component
– parallel communications across

components

• Small overheads on invocations on
ports

– Virtual function call (CCAness)
– Language Interoperability (some

data types)

Distributed
• No CCA overhead on calls within

component
• Overheads on invocations on ports

– Language interoperability (some
data types)

– Framework
– (Wide area) network

CCA Framework
Process 1

CCA Framework
Process 0

No Overhead

No Overhead

No Overhead

Parallel Computer

Distributed Environment

CCA Framework

Computer A

No Overhead

CCA Framework

Computer B

MODEST-7c Workshop 1615 September 2006

CCA
Common Component Architecture

CCA Supports Parallelism -- by
“Staying Out of the Way” of it

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Each process loaded with the
same set of components wired
the same way

••••

Any parallel programming
environments that can be mixed
outside of CCA can be mixed inside

MODEST-7c Workshop 1715 September 2006

CCA
Common Component Architecture

Components only on
process group B Group B

Multiple Component Multiple Data
(MCMD) Parallelism

Components on all
processes

Application driver & MCMD
support component

P0 P1 P2 P3

Framework

Components only on
process group A

Group A

••••

Useful for coupled parallel
simulations, multi-level
parallel algorithms, etc.

MODEST-7c Workshop 1815 September 2006

CCA
Common Component Architecture

Maintaining HPC Performance
• The performance of your application is as important

to us as it is to you
• The CCA is designed to provide maximum

performance
– But the best we can do is to make your code perform no

worse

• Facts:
– Measured overheads per function call are low
– Most overheads easily amortized by doing enough work per

call
– Other changes made during componentization may also

have performance impacts
– Awareness of costs of abstraction and language

interoperability facilitates design for high performance

MODEST-7c Workshop 1915 September 2006

CCA
Common Component Architecture

How Is the CCA Being Used
Today?

• Many different application domains and interests (in CCA)
– Combustion, quantum chemistry, radio astronomy, materials,

fusion, particle physics, subsurface transport, cell biology, …

• To manage code complexity

• To facilitate collaborative software development

• To build computational toolkits and frameworks

• Multi-language interfaces for libraries

• Defining common interfaces to facilitate interoperability and
reuse of software (libraries)

• Coupling of simulations

MODEST-7c Workshop 2015 September 2006

CCA
Common Component Architecture

Computational Facility for
Reacting Flow Science (CFRFS)

• A toolkit to perform
simulations of unsteady
flames

• Solve the Navier-Stokes
with detailed chemistry
– Various mechanisms

up to ~50 species, 300
reactions

– Structured adaptive
mesh refinement

• CFRFS today:
– 61 components
– 7 external libraries
– 9 contributors

“Wiring diagram” for a typical CFRFS
simulation, utilizing 12 components.

CCA tools used: Ccaffeine, and
ccafe-gui
Languages: C, C++, F77

MODEST-7c Workshop 2115 September 2006

CCA
Common Component Architecture

TSTT Unstructured
Mesh Tool

Interoperability
• Interoperability -- multiple
implementations
conforming to the same
interface

• Reuse – ability to use a
component in many
applications

• The larger the community
that agrees to the
interface, the greater the
opportunity for
interoperability and reuse

Overture

NWGrid

MOAB

Mesquite

GRUMMP

Frontier

FMDB

hypre

SuperLU

PETSc

Overture

NWGrid

MOAB

Mesquite

GRUMMP

Frontier

FMDB

hypre

SuperLU

PETSc

TS
TT

 U
ns

tru
ct

ur
ed

M

es
h

In
te

rfa
ce

TO
P

S
 L

in
ea

r
S

ol
ve

r I
nt

er
fa

ce

MODEST-7c Workshop 2215 September 2006

CCA
Common Component Architecture

Language
Interoperability

hypre

• High performance
preconditioners and linear
solvers

• Library written in C

• Babel-generated object-
oriented interfaces
provided in C, C++, Fortran

LAPACK07
• Update to LAPACK linear

algebra library
– To be released 2007
– Library written in F77, F95

• Will use Babel-generated
interfaces for: C, C++,
F77, F95, Java, Python

• Possibly also ScaLAPACK
(distributed version)

CCA tools used: Babel, Chasm

“I implemented a Babel-based interface for the hypre library of linear
equation solvers. The Babel interface was straightforward to write and
gave us interfaces to several languages for less effort than it would take
to interface to a single language.”

-- Jeff Painter, LLNL. 2 June 2003

MODEST-7c Workshop 2315 September 2006

CCA
Common Component Architecture

Is CCA for You?
• Much of what CCA does can be done without such tools if

you have sufficient discipline
– The larger a group, the harder it becomes to impose the necessary

discipline

• Projects may use different aspects of the CCA
– CCA is not monolithic – use what you need
– Few projects use all features of the CCA… initially

• Evaluate what your project needs against CCA’s
capabilities
– CCA targets complex software development challenges
– Not all projects are that complex

• Evaluate CCA against other ways of obtaining the desired
capabilities

• Suggested starting point:
– CCA tutorial “hands-on” exercises

MODEST-7c Workshop 2415 September 2006

CCA
Common Component Architecture

Take an Evolutionary Approach

• The CCA is designed to allow selective use and
incremental adoption

• “SIDLize” interfaces incrementally
– Start with essential interfaces
– Remember, only externally exposed interfaces need to be

Babelized

• Componentize at successively finer granularities
– Start with whole application as one component

• Basic feel for components without “ripping apart” your app.
– Subdivide into finer-grain components as appropriate

• Code reuse opportunities
• Plans for code evolution

MODEST-7c Workshop 2515 September 2006

CCA
Common Component Architecture

Components in the Small:
Impacts within a Project

Benefits include:
• Rapid testing, debugging, and benchmarking

• Support for implementation-hiding discipline

• Coordination of independent workers

• Interface change effects across components are
clear and usually automatically found by compilers if
overlooked

• Object-orientation made simpler for C and Fortran

MODEST-7c Workshop 2615 September 2006

CCA
Common Component Architecture

Components in the Large:
Connecting Multiple Projects

Benefits include:
• SIDL can be used to facilitate the interface

consensus processes
• Different sub-projects do not have to agree on one

implementation language
• Developers who never meet in person have an

excellent chance of code integration working on the
first try

Costs include:
• Consensus can be expensive to obtain
• Writing code for others to use is more difficult than

writing it just for yourself

MODEST-7c Workshop 2715 September 2006

CCA
Common Component Architecture

View it as an Investment

• CCA is a long-term investment in your software
– Like most software engineering approaches

• There is a cost to adopt

• The payback is longer term

• Biggerstaff’s Rule of Threes
– Must look at at least three systems to understand what is

common (reusable)
– Reusable software requires three times the effort of usable

software
– Payback only after third release

MODEST-7c Workshop 2815 September 2006

CCA
Common Component Architecture

Where is CCA Now?
• CCA development has been driven in large part by the needs of

our application partners
– Many useful and interesting ideas/needs we haven’t had

time/funding to address
– Happy to collaborate to do new things

• CCA specification stable, and near “1.0”
• CCA tools available and working

– Ccaffeine framework, Babel, Chasm lang. interop.
– Distributed framework lags somewhat
– Build procedures somewhat cumbersome
– Need to be more widely ported & tested
– Need additional tools to automate tedious aspects of software

development process

• Many applications in many different fields of science are using
CCA
– Combustion, quantum chemistry, radio astronomy, materials,

fusion, particle physics, subsurface transport, cell biology, …

• We do not yet have a large suite of ready to use “off the shelf”
components

MODEST-7c Workshop 2915 September 2006

CCA
Common Component Architecture

Looking Forward

• Center for Technology for Advanced Scientific
Component Software (TASCS)
– ANL, LANL, LLNL, ORNL, PNNL, SNL
– Binghamton, Indiana, Maryland, Utah
– Tech-X Corp.

• Funded by DOE SciDAC program 2006-2011

• $3M/year

MODEST-7c Workshop 3015 September 2006

CCA
Common Component Architecture

TASCS Component Technology
Development Initiatives

• Computational Quality of Service (CQoS)
– Dynamic adaptation of running applications in

response to performance, numerical, or other
criteria

• Software Quality and Verification
– Semantic annotations on component interfaces,

performance-sensitive enforcement of assertions

• Emerging HPC Paradigms
– Using component environments to facilitate

programming coming massively parallel and
heterogeneous systems

MODEST-7c Workshop 3115 September 2006

CCA
Common Component Architecture

TASCS Support for the CCA
Environment

• Maintaining, supporting, and porting the core
tools

• Enhancing the CCA environment
– Completing and extending the CCA specification
– Interoperability with other component-like

environments
– SIDL/Babel enhancements

• Usability
– “CCA Lite”
– Debugging and Testing

MODEST-7c Workshop 3215 September 2006

CCA
Common Component Architecture

TASCS Component Toolkit

• Component development tools
– Command line
– IDE

• CCA component collection

• Community interface development

• Component repository

MODEST-7c Workshop 3315 September 2006

CCA
Common Component Architecture

TASCS Outreach and Support

• Application support

• User outreach and support
– Tutorials, coding camps, etc.

• Community outreach

MODEST-7c Workshop 3415 September 2006

CCA
Common Component Architecture

The CCA is Not Just About Tools

• Use the ideas of component technology, software
architecture, and software engineering

• Think about the software in small, manageable
pieces (components)

• Think about how the pieces interact (interfaces)

• Think about how to organize the pieces into the
application

• Think about software reuse, interoperability, and
common interfaces

MODEST-7c Workshop 3515 September 2006

CCA
Common Component Architecture

Even the (Component) Ideas Can’t
Solve all Problems

• Coupled simulation especially involves issues
that component concepts can’t address
– New physics exposed by the coupling
– Mathematical/numerical issues

• The social and sociological aspects are often
at least as important as the scientific or
technical to success

MODEST-7c Workshop 3615 September 2006

CCA
Common Component Architecture

More Information
• CCA Forum

– Web site: http://www.cca-forum.org
– Mailing list: cca-forum@cca-forum.org
– In person: quarterly meetings (next: 5-6 Oct @ ANL)

• Babel
– Web site: http://www.llnl.gov/CASC/components

• Papers
– BA Allan, et al., A Component Architecture for High-

Performance Scientific Computing, Intl. J. High-Perf.
Computing Appl. 20, 163 (2006)

– LC McInnes, et al., Parallel PDE-Based Simulations Using
the Common Component Architecture, in Are Magnus
Bruaset and Aslak Tveito, editors, Numerical Solution of
PDEs on Parallel Computers, volume 51 of Lecture Notes in
Computational Science and Engineering (LNCSE), pages
327-384, Springer-Verlag, 2006

• Me: bernholdtde@ornl.gov

